
Facilitating the Portability of User Applications
in Grid Environments

Paul 2. Kolano

NASA Advanced Supercomputing Division, NASA .4mes Research Center,
M/S 258-6, Moffett Field, CA 94035 U.S.A.

kolanoQnas.nasa.gov

Abstract. Grid computing promises the ability to connect geographi-
cally and organizationally distributed resources to increase effective com-
putational power, resource utilization, and resource accessibility. For grid
computing to be successful, however, users must be able to easily execute
the same application on different resources. Different resources, however,
may be administered by different organizations with different software in-
stalled, different file system structures, and different default environment
settings. Even within the same organization, the set of software installed
on a given resource is in constant flux with additions, upgrades, and re-
movals. Users cannot be expected to understand all of the idiosyncrasies
of each resource they may wish to execute jobs on, thus must be provided
with automated assistance. This paper describes a new OGSI-compliant
grid service (the Portability Manager) that has been implemented as
part of NASA's Information Power Grid (IPG) project to automatically
estab!ish the execution environment for user applications.

1 Introduction

Grid computing [6] promises the ability to connect geographically and organiza-
tionally distributed resources to increase effective computational power, resource
utilization, and resource accessibility. Real world experiences with grids [1,11],
however, have had mixed results. While gains in computational power were even-
tually achieved, they were only made a reality after significant efforts to get user
applications running on each suitable resource. Differences across resources in
installed software, file system structures, and default environment settings re-
quired manually transferring dependent software and setting environment vari-
ables. This problem is common even in non-grid environments. Users frequently
encounter missing or incompatible shared libraries (.so files) on Unix systems or
missing dynamic link libraries (.DLL files) on Windows systems when attempt-
ing to execute binaries that have been transferred from a similar system. Even
in a language that is designed for portability, such as Java, this same problem
exists. That is, a Java application can only be executed on a system that has all
of the classes installed on which it depends. If all dependent software is present,
an application still may not be able to execute if the environment variables are
not set such that it can find that software. In grid environments, this problem is

1

to allow different versions of an executable to be staged to a machine based
on its processor architecture type and operating system version. Executables are
retrieved from a network-based executable repository. This system only supports
executables, however, and has no support for shared libraries, Java classes, or
Per1 or Python programs, nor does it support automated dependency analysis.

The Uniform Interface to Computing Resources (UNICORE) [4] allows jobs
to be built from platform-independent abstract job operations, which are trans-
lated into concrete operations that can be executed on an actual system. The
translation relies on a static configuration file located on each resource describing
the software installed there. For example, an abstract job executing ‘1s’’ would be
mapped using the configuration file to a concrete job executing “/bin/ls”. This
approach requires extra administration every time software is added to, removed
from, or updated on a system, it only supports executables, and it only allows

The Automatic Configuration Service of [lo] was implemented to automat-
ically manage the installation and removal of software for component-based
applications according to user-specified dependency information. This service
has goals similar to those of the Portability Manager, but is implemented as a
CORBA service as opposed to an OGSI-compliant service. A limitation of this
service is that the user must fully specify all dependencies manually. There is
also no discussion of managing environment variables, which are required for
an application to find installed software and which differ according to software
type. In addition, this service uses a centralized repository, thus cannot take
advantage of software individually deployed by users.

hstal!ers, package managers, and application management systems [3] are
typically used to manage the software installed on standalone systems and sys-
tems on the same network. While these approaches greatly increase the ability
of system administrators to provide a consistent and stable set of software across
an organization’s resources, they are only of use when the administrator knows
what software will be needed. Since grids enable users from different organiza-
tions with different software requirements to share resources, these mechanisms
do not provide the necessary level of support.

Replica management systems such as Reptor [8] provide high-level mecha-
nisms for managing the replication, selection, consistency, and security of data
to provide users with transparent access to geographically distributed data sets.
Much of this functionality is also suitable for managing software across grid re-
sources and is, in fact, the basis of part of the Portability Manager. Replica
management systems do not address software specific issues, however, such as
automatic dependency analysis and environment variable settings.

I

- software to run on systems that already have all required software installed.

3 NASA Information Power Grid

NASA’s Information Power Grid (P G) [9J is a computational and data grid
spanning a number of NASA centers that consists of various high performance su-
percomputers, storage systems, and data gathering instruments scattered across

3

1.
2.

3.

Determine the software that the execution operation application requires
Provide a location for that software on the execution operation host by:
(a) Determining if the software exists on the execution operation host
(b) Finding a source for any missing software
(c) Copying missing software to the execution operation host
Set environment variables based on provided software locations

A list of dependencies is associated with each execution operation. A dependency
consists of basic requirements including a type, a name, a version range, and a
feature list as well as information gathered during processing including a source
host and path, a target path, and an "analyzed flag" to indicate its analysis sta-
tus. The Portability Manager currently supports five software types: executables,
shared libraries, Java classes, and Per1 and Python programs. The dependency
name contains a canonical name for the software depending on its type (e.g. Is,
libc, java.util.List, File::Basename, xml.sax.xmlreader, etc.). The version range
consists of a minimum and/or maximum version required. The feature list con-
tains features that the dependency must support. For example, the application
might require the w3m browser compiled with SSL support. Currently, versions
are only supported for shared libraries and features are not yet supported as a
consistent way to determine these automatically has not yet been determined.

The source host and path, target path, and analyzed flag are used to store
information as processing proceeds. Stages are only executed if the information
they provide has not already been gathered. Thus, a job for which the execution
environment has already been fully established can be sent through the Porta-
bility Mamger without effect. This allows the user to have complete control of
job processing. A user can execute stages individually, can specify dependencies
manually, can turn analysis off, can specify an exact source for software, can
specify a location where svftware already exists, or any combination thereof.
The Portability Manager will fill in any gaps in the environment left by the user
or return the job unchanged if no modifications are necessary.

Although the Portability Manager makes its best attempt to establish the
execution environment for a job, it is not possible to guarantee that the resulting
environment will always be suitable. There are three scenarios for which such a
guarantee cannot be made:

1. Required software A does not exist or cannot be located on the target system

2. Required software A depends on software B, which depends on software C,

3. Required software A depends on software B, but the analysis techniques used

and no source for A can be found

but the file for B cannot be located for analysis

on A are inadequate to determine B is a dependency

Since executing a job for which the execution environment has not been fully
established leads to wasted CPU cycles, it is desirable to notify the user prior to
job execution. For the third scenario, nothing can be done besides documenting
the limitations of the analysis techniques. The existence of the first two scenarios,

5

addall.py (add #'s from stdin)
import sys
import string
import Adder
adder = Adder.Adder()
for line in sys.stdin.readlines():

n = string.atoi(line)
adder.add(n)

print adder.sum()

Adder.py (maintain sum)
class Adder:

def --init--(self):
self.value = 0

def add(self, n):
self.value += n

def sum(self):
return self.value

Fig. 1. Example job Fig. 2. Portability Manager implementation

SFWHONPATH
Sm)Mvpy75I4

lMnrl Onanal Job
-f Analyze Dependencies

+ Lookup Dependencies
-+ Transfer Dependencies
t Set Vanables

Locate Dependencies

Fig. 3. Stages of job transformation

7

including bash, csh, ksh, sh, tcsh, and zsh. A variable ‘Car” can be read from a
shell “<shell>” using “<shell> -c ’echo $var” ’. Variables gathered include PATH,
LD-LIBRARY-PATH and variants, CLASSPATH, JAVA-HOME, PERLLIB
-and variants, and PYTHONPATH. Once the paths are set, files are located by
type, using “1s” for executables and libraries and the corresponding interpreter
for Java, Perl, and Python dependencies. It is assumed that if the interpreter is
not available, then no dependencies of that type exist on the system.

After this stage, Figure 3 shows that all dependencies of the example job have
been located on the target system except for the Adder Python dependency.

4.3 - Dependency Lookup

-Ideally, after the analysis and location stages, every dependency has either been
-.located on the target system or a source for it has been found during analysis.

Since there is no guarantee that this will be the case, however, a final attempt is
made to find any unresolved dependencies in a software catalog. This catalog is
based on the European DataGrid (EDG) Local Replica Catalog (LRC), which is
part of a complete replica management system [8]. LRCs map logical file names
(LFNs) to physical file names (PFNs) and are normally used for storing the
locations of data sets. In this case, an LRC is used to map LFNs constructed
from a software’s type, name, supported operating system, and version to a
location on some system where that particular software resides. In addition, each
PFN may have a set of attributes associated with it. Since dependency analysis
has already been performed by this stage, the Portability Manager uses these
attributes to store the LFNs of pre-identified dependencies associated with each
PFN, which are recursively added as dependencies and looked up as necessary.

Using a catalog instead of a repository allows for a flexible approach to
software management. As long as a resource is accessible to the file transfer
mechanisms of the IPG Job Manager, the software on that resource can be uti-
lized by the Portability Manager. If an organization wishes to have a permanent
repository, they can dedicate a set of resources to the task with an appropriate
repertoire of software and map LFNs into the file systems of those resources.
Otherwise, the LFNs can simply point to the locations of software on existing
systems. The design also allows users to manage personal software repositories.
The Portability Manager provides a user interface to add and remove mappings
from LFNs in a personal namespace based on their grid identity to the PFNs of
choice. Thus, users can maintain a collection of software that they frequently use
on their personally selected resources, which will be utilized by the Portability
Manager as a source for the software required by their jobs. For a given LFN, the
current implementation first selects the user’s PFN, if it exists, or if not, selects
the first matching PFN from the main catalog. Future versions of the Portability
Manager will perform more intelligent selection based on locality, reliability, etc.

After this stage, Figure 3 shows that the one dependency without a source
or target location, the Adder Python dependency, now has a source. In addition,
it has been marked as “analyzed” based on its dependency information in the
software catalog, which indicated that no additional software was required.

9

framework [7]. In the OGSA model, all grid functionality is provided by named
gnd services that are created dynamically upon request. The newest version of
Globus, version 3.0 (GT3), is the reference implementation of OGSI and provides
the functionality of GT2 as grid services.

Figure 2 shows the current implementation of the Portability Manager. In
this figure, a client application uses the Portability lManager client API to request
the establishment of the execution environment for a given job. The Portability
Manager client converts the Java job object into XML for transmission to an
Apache Tomcat server running an OGSI container. The OGSI container creates
an instance of the Portability Manager and invokes its “establishEnvironment”
method with the given job. The Portability Manager uses the OGSI GRAM
service to execute the analysis script on each host with fiIes requiring analysis

- in parallel. All jobs are executed using the grid credentials of the client applica-
-tion user, thus users are not given any additional privileges beyond what they
normally have. After all dependencies have been gathered, the location script
is then executed in parallel on each execution operation host with unresolved
dependencies. For any dependencies that could not be located or for which no
source could be found, an instance of the EDG LRC is queried in an attempt
to find a source. At this point, the Portability Manager sets up the return job
to copy dependencies as necessary and sets the environment variables appro-
priately. The job is returned in XML to the Portability Manager client, which
converts the job back into a Java object for the client application.

The Portability iManager has been fully tested on FreeBSD systems and the
analysis and location scripts have been tested on IRIX, SunOS, and FreeBSD. It
has not yet been deployed in the NASA IPG due to the limitations of the current
release of the GT3 toolkit. Currently, GT3 is only available in alpha form, which
is not yet suitable for production IPG usage and does not support IRIX systems,
which make up the bulk of the IPG. For the same reason, the Portability Manager
has not yet been integrated with the IPG Resource Broker or Job Manager, but
exists as a standalone service. The current Resource Broker and Job Manager
are built on top of GT2. The Portability Manager will be integrated with the
next versions of these services, which will be OGSI-compliant.

6 Conclusions and Future Work

This paper has described the IF’G Portability Manager, which is an OGSI-
compliant grid service that has been implemented to automatically establish
the execution environment for user applications. The Portability Manager ana-
lyzes applications to determine their software dependencies, locates the software
on the target system, if possible, or elsewhere, if not, arranges the transfer of
software as necessary, and sets the environment variables to allow each applica-
tion to find its required software. The Portability Manager has a flexible design
that gives the user considerable control over job processing including choosing
which steps to perform and managing the source for frequently used software
in a personal software catalog. The Portability LManager allows users to execute

11

